How Do the Nucleophilicity and Size of an Isocyano Carbon Atom Differ from those of a Cyano Nitrogen Atom?

Anthony C. Legon

Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

Hydrogen-bond stretching force constants k_{σ} and distances $r(B \cdots X)$ from the rotational spectra of the $C_{3\nu}$ dimers $B \cdots HX$, where $B = CH_3NC$ or CH_3CN and X = F, CI, CN or CCH, have been used to establish the difference in magnitude of the gas-phase nucleophilicity and of the van der Waals radius between the isocyano carbon atom in CH_3NC and the cyano nitrogen atom in CH_3CN .

The relative nucleophilicities of alkyl cyanides and the isomeric isocyanides are quantities of interest in physical organic chemistry. Various physical properties of methyl isocyanide have been interpreted¹ as indicating that the predominant contribution to the valence-bond description of the molecule is made by the polar structure $CH_3N^+ \equiv C^-$ first proposed by Lindemann and Wiegrebe.² The isocyano carbon atom then carries a non-bonding (n) electron pair with a formal negative charge. A nucleophilic character is therefore not unexpected. Although the N atom in the isomeric CH₃CN also carries an npair, it is formally neutral. The negative charge on C, the lower electronegativity of C than N, and the observation of a greater molar bond refraction for the isocyano group than for the cyano group led to the suggestion³ that the n-pair in RNC molecules is more loosely bound than in RCN. Consequently, RNC might¹ be a stronger Lewis base and a better nucleophile than RCN. Some evidence for such an order is available.

First, the shifts Δv in the wavenumbers of OH and CH stretching vibrations are greater when these groups form hydrogen bonds to NC^{4-6} than when the bonds are to CN. Secondly, the gas-phase proton affinity⁷ of CH₃NC (844 kJ mol⁻¹) is greater than that of CH₃CN (788 kJ mol⁻¹). Thirdly, but less directly, the reactivity of CH₃NC with anhydrous hydrogen halides or aqueous acids or halogens is significantly greater.^{8.9} However, all of this evidence should be interpreted cautiously. For example, the order of IR shifts might not parallel the order of proton acceptor ability of B in hydrogen bond formation.⁴ Moreover, proton affinities are defined as ΔH_m° for BH + - \rightarrow H⁺ + B and there is some evidence that the ions CH₃NCH⁺ and CH₃CNH⁺ are not isostructural.⁹ The difference in gas-phase proton affinity might therefore measure more than just the difference in nucleophilicity of the n-pair on C in CH₃NC and on N in CH₃CN. A more appropriate gauge of relative nucleophilicity might be one that measures the propensity of the n-pair to interact with a non-perturbing positive charge.

A convenient scale of nucleophilicity based on such a nonperturbing interaction has been proposed recently.¹⁰ The nucleophilicity of the acceptor region of a molecule B is derived from the hydrogen-bond stretching force constant k_{σ} of the weakly bound dimer B··· HX, k_{σ} being one measure of the strength of the hydrogen bond, *i.e.* through the energy ${}^{1}k_{6} dr^{2}$ required to produce a unit infinitesimal displacement along the dissociation coordinate. The success of a set of empirical rules¹¹ and a simple electrostatic model¹² in rationalizing a wide range of angular geometries of dimers B····HF, for example, is consistent with the view¹³ that the electrophilic end H^{δ +} of HF acts as a non-perturbing probe of an n-pair carried by B. The experimental angular geometries were all determined for the isolated dimer B····HF in the gas phase by rotational spectroscopy, from which technique k_{σ} is also available. When a

Table 1 Gas-phase nucleophilicities N and electrophilicities E of some molecules B and HX^{*a*}

В	Ν	НХ	Ε
CO PH ₃ H ₂ S (CH ₃) ₃ P HCN (CH ₃) ₃ CCN H ₂ O NH ₃	3.4 4.4 4.8 6.9 7.3 9.0 10.0 11.5	HF HCI HCN HCCH	10.0 5.0 4.25 2.4

" Values from ref. 10.

sufficiently large number of k_{σ} values had been determined, it was realized ¹⁰ that a nucleophilicity N could be assigned to each B and an electrophilicity E to each HX so that the whole set of k_{σ} could be reproduced by the expression in eqn. (1) where

$$k_{\sigma} = cNE \tag{1}$$

c = 0.25 N m⁻¹. A selection of these gas-phase N and E values is displayed in Table 1.

Until recently, the k_{σ} values important for the determination of $N(CH_3NC)$, namely those for $CH_3NC \cdots HF$ and $CH_3NC \cdots HC$, were not available because of the reactivity of CH_3NC and HX alluded to above. The development of a fastmixing and freezing technique ¹⁴ has now allowed the rotational spectra of these dimers to be observed, however. In this technique two mixtures, one of CH_3NC diluted in argon and the other of HF similarly diluted, for example, are kept separate until the point at which they expand into a vacuum through a nozzle. The dimers $CH_3NC \cdots HF$ formed on mixing achieve collisionless expansion within a few microseconds, are thereby frozen and no reaction is possible thereafter. The expanded gas can then be probed with microwave radiation and the rotational spectrum of $CH_3NC \cdots HF$ recorded.¹⁵

The force constants k_{σ} determined from centrifugal distortion constants D_J made available by analysis of the rotational spectra of CH₃NC · · · HX (X = F, Cl, CN and CCH)¹⁵⁻¹⁸ are summarized in Table 2. The necessary relationship between D_J and k_{σ} for these isostructural C_{3v} molecules is set out elsewhere.¹⁹ The k_{σ} for the corresponding series of isomers CH₃CN · · · HX, similarly determined,²⁰ ²³ are also given in Table 2. By taking the *E* value of the appropriate HX from Table 1, each k_{σ} in Table 2 generates an *N* value. As seen in Table 2, the *N* values for the CH₃NC · · · HX series closely parallel those of the CH₃CN · · · HX series. Moreover, it is clear that *N* is indeed a property of the acceptor molecule B in each series and that the mean value of *N* is identical for CH₃NC and

Table 2 Hydrogen-bond stretching force constants k_{σ} for dimers $CH_3NC \cdots HX$ and $CH_3CN \cdots HX$

$\mathbf{B} = \mathbf{C}\mathbf{H}_{3}\mathbf{N}\mathbf{C}$		$\mathbf{B} = \mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{N}$	N
$k_{\sigma}/N m^{-1}$	N(B) ^{<i>a</i>}	$k_{\sigma}/N m^{-1}$	N(B) ^a
19.9(3)*	8.0	20.1(5) ^c	8.0
$11.4(1)^{d}$	9.1	10.70(3) ^e	8.6
$8.7(2)^{f}$	8.2	$9.51(2)^{g}$	8.2
$4.78(1)^{h}$	8.0	4.75(1) ⁱ	7.9
mean	8.3(4)	mean	8.3(5)
	$\frac{B = CH_3NC}{k_{\sigma}/N m^{-1}}$ 19.9(3) ^b 11.4(1) ^d 8.7(2) ^f 4.78(1) ^h mean	$\frac{B = CH_3NC}{k_o/N m^{-1}} \frac{N(B)^a}{N(B)^a}$ $\frac{19.9(3)^b}{11.4(1)^d} \frac{8.0}{9.1}$ $\frac{8.7(2)^f}{8.2} \frac{8.2}{4.78(1)^h} \frac{8.0}{8.0}$ mean $\overline{8.3(4)}$	$\frac{B = CH_3NC}{k_{\sigma}/N \text{ m}^{-1}} \qquad N(B)^a \qquad \frac{B = CH_3CN}{k_{\sigma}/N \text{ m}^{-1}}$ $\frac{19.9(3)^b}{11.4(1)^d} \qquad 8.0 \qquad 20.1(5)^c$ $\frac{11.4(1)^d}{9.1} \qquad 10.70(3)^e$ $\frac{8.7(2)^f}{8.2} \qquad 9.51(2)^a$ $\frac{4.78(1)^h}{8.0} \qquad \frac{8.3(4)}{4.75(1)^i} \qquad \text{mean}$

Calculated from eqn. (1) and the appropriate E value from Table 1. ^b Ref. 15. ^c Ref. 20. ^d Ref. 16. ^e Ref. 21. ^f Ref. 17. ^g Ref. 22. ^h Ref. 18. ⁱ Ref. 23.

Table 3 Distances $r(B \cdots X)$ in $CH_3NC \cdots HX$ and $CH_3CN \cdots HX$

Dimor	$B = CH_3NC$	$B = CH_3CN$	
B····HX	$r(C \cdots X)/\text{Å}^a$	$r(N \cdots X)/\text{Å}^{a}$	$\Delta r/{ m \AA}^b$
B···HF	2.840 °	2.752 ^d	0.088
B · · · HCl	3.400 °	3.292 ^f	0.108
B · · · HCN	3.423 ^g	3.272*	0.151
В••• НССН	3.596 ⁱ	3.426 ^j	0.170
		mean	0.13(3)

^{*a*} All $r(\mathbf{B}\cdots\mathbf{X})$ calculated using the model discussed in ref. 23. ^{*b*} $\Delta r =$ $r(C \cdots X) - r(N \cdots X)$. ^c Ref. 15. ^d Ref. 20. ^e Ref. 16. ^f Ref. 21. ^g Ref. 17. ^h Ref. 22. ⁱ Ref. 18. ^j Ref. 23.

CH₃CN, even though imperfections in the model lead to small variations of N within a given series. On this basis, the gas-phase nucleophilicities of CH₃NC and CH₃CN must be considered indistinguishable and to lie in magnitude between those of HCN and $(CH_3)_3$ CCN (see Table 1).

Another quantity of some physico-chemical interest available via the rotational spectra of $CH_3NC \cdots HX$ and CH₃CN···HX dimers is the van der Waals radius of the isocyano carbon atom. The distances $r(C \cdots X)$ and $r(N \cdots X)$ have been determined for the isostructural series CH₃NC · · · HX and CH₃CN···HX, respectively, by an internally consistent method that allows for the contributions of the intermolecular bending modes to the zero-point motion and is described in detail elsewhere.²³ The results are displayed in Table 3, also included in which are the quantities $\Delta r =$ $r(\mathbf{C} \cdots \mathbf{X}) - r(\mathbf{N} \cdots \mathbf{X})$. The main conclusion of interest is that Δr is positive and close to 0.1 Å for each X. In addition, there is a small systematic increase in Δr as the interaction becomes

weaker. As discussed previously,¹² distances $r(B \cdots X)$ in hydrogen-bonded dimers B · · · HX are a reasonable approximation to the sum of the van der Waals radii of the acceptor atom on B and the atom X. The implication of the present work is therefore that the van der Waals radius of isocyano C exceeds that of cyano N by approximately 0.1 Å, *i.e.* by the mean value of Δr (Table 3). Given the accepted van der Waals radius of N as 1.4 Å, the above discussion suggests a value of 1.5 Å for isocyano C.

Acknowledgements

A research grant from the SERC in support of this work is gratefully acknowledged.

References

- 1 J. A. Green II and P. T. Hoffman, in Isonitrile Chemistry, ed. I. Ugi, Academic Press, New York, 1971, ch. 1. 2 H. Lindemann and L. Wiegrebe, *Chem. Ber.*, 1930, **63**, 1650.
- 3 R. G. Gilles, J. Org. Chem., 1962, 27, 4103.
- 4 P. von R. Schleyer and A. Allerhand, J. Am. Chem. Soc., 1962, 84, 1322; 1963, 85, 866.
- 5 L. L. Ferstandig, J. Am. Chem. Soc., 1962, 84, 3533.
- 6 R. G. Gilles and J. L. Occolowitz, Spectrochim. Acta, 1963, 19, 873.
- 7 J. S. Knight, C. G. Freeman and M. J. McEwan, J. Am. Chem. Soc., 1986, 108, 1404.
- 8 T. Saegusa and Y. Ito, in Isonitrile Chemistry, ed. I. Ugi, Academic Press, New York, 1971, ch. 4.
- 9 Y. Y. Lim and A. R. Stein, Can. J. Chem., 1971, 49, 2455.
- 10 A. C. Legon and D. J. Millen, J. Am. Chem. Soc., 1987, 109, 356.
- 11 A. C. Legon and D. J. Millen, Faraday Discuss., 1982, 73, 71.
- 12 A. D. Buckingham and P. W. Fowler, Can. J. Chem., 1985, 63, 2018.
- 13 A. C. Legon and D. J. Millen, Chem. Soc. Rev., 1987, 16, 467. 14 A. C. Legon and C. A. Rego, J. Chem. Soc., Faraday Trans., 1990, 86, 1915.
- 15 A. C. Legon, D. G. Lister and H. E. Warner, Angew. Chem., Int. Ed. Engl., to be published.
- 16 A. C. Legon, D. G. Lister and H. E. Warner, unpublished observations.
- 17 A. C. Legon and J. C. Thorn, unpublished observations. 18 A. C. Legon, D. G. Lister and C. A. Rego, *Chem. Phys. Lett.*, to be published.
- 19 D. J. Millen, Can. J. Chem., 1985, 83, 1477.
- 20 P. Cope, A. C. Legon, D. J. Millen and L. C. Willoughby, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1197.
- 21 A. C. Legon, D. J. Millen and H. M. North, J. Phys. Chem., 1987, 91, 5210.
- 22 N. W. Howard and A. C. Legon, J. Chem. Soc., Faraday Trans. 2, 1987, 83, 991.
- 23 N. W. Howard and A. C. Legon, J. Chem. Phys., 1986, 85, 6898.

Paper 1/06441J Received 24th December 1991 Accepted 9th January 1992